Starch metabolism and antiflorigenic signals modulate the juvenile-to-adult phase transition in Arabidopsis.
نویسندگان
چکیده
The physiology and genetics underlying juvenility is poorly understood. Here, we exploit Arabidopsis as a system to understand the mechanisms that regulate floral incompetence during juvenility. Using an experimental assay that allows the length of juvenility to be estimated and mutants impaired in different pathways, we show that multiple inputs influence juvenility. Juvenile phase lengths of wild type (WT) accessions Col-0, Ler-0 and Ws-4 are shown to differ, with Col-0 having the shortest and Ws-4 the longest length. Plants defective in sugar signalling [gin1-1, gin2-1, gin6 (abi4)] and floral repressor mutants [hst1, tfl1, tfl2 (lhp1)] showed shortened juvenile phase lengths compared to their respective WTs. Mutants defective in starch anabolism (adg1-1, pgm1) and catabolism (sex1, sex4, bam3) showed prolonged juvenile phase lengths compared to Col-0. Examination of diurnal metabolite changes in adg1-1 and sex1 mutants indicates that their altered juvenile phase length may be due to lack of starch turnover, which influences carbohydrate availability. In this article, we propose a model in which a variety of signals including floral activators and repressors modulate the juvenile-to-adult phase transition. The role of carbohydrates may be in their capacity as nutrients, osmotic regulators, signalling molecules and/ or through their interaction with phytohormonal networks.
منابع مشابه
The Sequential Action of miR156 and miR172 Regulates Developmental Timing in Arabidopsis
The transition from the juvenile to the adult phase of shoot development in plants is accompanied by changes in vegetative morphology and an increase in reproductive potential. Here, we describe the regulatory mechanism of this transition. We show that miR156 is necessary and sufficient for the expression of the juvenile phase, and regulates the timing of the juvenile-to-adult transition by coo...
متن کاملCloning and Expression Analysis cf Two Photosynthetic Genes, PSI-H and LHCB1, Under Trehalose Feeding Conditions in Arabidipsis Seedlings
Trehalose (a-D-glucosyl-[1,1]-a-D-glucopyranoside) is involved in mechanisms that coordinate metabolism with plant growth adaptation and development. The main objective of the current work was to find out whether trehalose feeding affects the expression of two genes involved in photosynthesis: one gene coding for photosystem1 subunit H (PS1-H) and the other for the light harvesting complex B1 (...
متن کاملDigital gene expression analysis of male and female bud transition in Metasequoia reveals high activity of MADS-box transcription factors and hormone-mediated sugar pathways
Metasequoia glyptostroboides is a famous redwood tree of ecological and economic importance, and requires more than 20 years of juvenile-to-adult transition before producing female and male cones. Previously, we induced reproductive buds using a hormone solution in juvenile Metasequoia trees as young as 5-to-7 years old. In the current study, hormone-treated shoots found in female and male buds...
متن کاملFunctional analysis of glycin rich- RNA binding protein, a suppressor of trehalose-6-phosphate mediating growth arrest in Arabidopsis thaliana
Metabolism of the alpha-1,1 glucose disaccharide, trehalose, is indispensable in plants. In the Murashigeand Skoog (MS) medium, trehalose inhibits plant growth and allocation of carbon to roots. A suppressorof trehalose-6-phosphate (T6P) mediated growth arrest, GR-RBP2, is characterized in more detail.Phylogenetic analysis revealed that GR-RBP2 is a protein of likely prokaryot...
متن کاملMiRNA Control of Vegetative Phase Change in Trees
After germination, plants enter juvenile vegetative phase and then transition to an adult vegetative phase before producing reproductive structures. The character and timing of the juvenile-to-adult transition vary widely between species. In annual plants, this transition occurs soon after germination and usually involves relatively minor morphological changes, whereas in trees and other perenn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant, cell & environment
دوره 36 10 شماره
صفحات -
تاریخ انتشار 2013